

Improving Soil Health to Weather The Storm

JAMIE PATTON

SENIOR OUTREACH SPECIALIST

NUTRIENT AND PEST MANAGEMENT PROGRAM

What is Soil Health?

Definition

...continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ https://www.ndsu.edu/soilhealth/?page_id=37

Soil Health is Soil Resiliency

Last Year's Lessons

Fields under a soil health management system

- Maintained trafficability and drainage
 - Planted and harvested!!!
- Adequate nutrient cycling
- Maintained yield
- Reduced erosion

2019 USDA-FSA

19.4 million prevent plant acres nationwide

Largest # of acres since records began in 2007

592,808 acres in WI

https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index

TABLE 4. Impact of cover crops on costs, returns and net profit for corn following one, three and five years of cover crop use and with various management scenarios

BUDGET ITEM	YEARS OF COVER CROPPING		
All figures are per acre	One	Three	Five
Estimated input savings when using cover crops			
Fertilizer ¹	\$0	\$14.10	\$21.90
Weed control ²	\$0-\$15	\$10-\$25	\$10\$25
Erosion repair ³	\$2–\$4	\$2–\$4	\$2–\$4
Subtotal	\$2-\$19	\$26.10-\$43.10	\$33.90-\$50.90
a. Savings on inputs (the low end of the subtotal range from above)	\$2	\$26.10	\$33.90
b. Income from extra yield in normal weather year (survey data) ⁴	\$3.64	\$12.32	\$21
c. Cost of seed and seeding (survey data)⁵	\$37	\$37	\$37
Net return in a normal weather year (a + b - c)	-\$31.36	\$1.42	\$17.90
Special situations where cover crops can pay off faster			
I. When facing severe herbicide-resistant weeds ⁶	\$27	\$27	\$27
Adjusted net return	-\$4.36	\$28.42	\$44.90
II. Potential grazing income ⁷	\$49.23	\$49.23	\$49.23
Adjusted net return	\$17.87	\$50.65	\$67.13
III. Compaction addressed by cover crops ⁸	\$15.30	\$15.30	\$15.30
Adjusted net return	-\$16.06	\$16.72	\$33.20
IV. Assisting the conversion to no-till from conventional ⁹	\$23.96	\$23.96	\$23.96
Adjusted net return	-\$7.40	\$25.38	\$41.86
V. Income from extra yield in a drought year (survey data) ¹⁰	\$58.70	\$75.73	\$92.55
Adjusted net return	\$27.34	\$77.15	\$110.45
VI. Extra fertilizer savings from improved fertility ¹¹	\$15.20	\$15.20	\$15.20
Adjusted net return	-\$16.16	\$16.62	\$33.10
VII. Federal or state incentive payments received ¹²	\$50	\$50	\$50
Adjusted net return	\$18.64	\$51.42	\$67.90

https://www.sare.or g/Learning-Center/Bulletins/Cov er-Crop-Economics

Improving Soil Health Takes a SYSTEM

Not one practice...not one year

- Most emphasized
 - Cover crops
 - No-till
 - Organic amendments
 - Crop rotations
- Less emphasized, just as important
 - Routine soil testing
 - Traffic and equipment management
 - Precision/efficient input management

Weathering the Storm

Inseparable processes Today's focus... AGGREGATES

Physical

- Aggregation and Structure
- Surface Sealing
- Compaction
- Porosity
- Water Movement and Availability

Chemical

- pН
- Soluble Salts
- Sodium
- Nutrient Holding Capacity
- Nutrient Availability

Biological

- Macrofauna
- Microfauna
- Microorganisms
- Roots
- Biological Activity
- Organic Matter

Aggregates control pore space

- Water infiltration
 - Available water recharge
 - Erosion and runoff
- Water percolation
 - Soil aeration/saturation
 - Trafficability
 - Microbial populations
 - Soil chemistry

• Root growth

- Nutrient acquisition
- Pore space regeneration/stabilization

2015 Infiltration Rates – NE WI

Permanent Vegetation 10.6 in/hr

Corn-Soybeans-Wheat 3.9 in/hr

Compaction can cause 25 to 50% yield loss

Increase tillage costs by 35%

Impedes drainage and trafficability...

Raghavan, GSV, Alvo, P, and McKyes, E. 1990. Soil Compaction in Agriculture: A View Toward Managing the Problem. In: Advances in Soil Science: Soil Degradation. Lal, R and Stewart, BA, editors. Springer, NY

Manage compaction

• Tire size, inflation and axle loads

Manage compaction

- Wheel alignment, number of equipment passes
- 70 to 90 percent of all compaction occurs on first pass

https://www.slideshare.net/abelalbuquerque/compaction-schuler3-06

²⁸ Hard dry soil

Normal

Wet soil

Reduce tillage, where possible

- Physically crushes aggregates
- Biologically and chemically reduces glues
 - $^{\circ}\,$ Aerates the soil and increases decomposition of SOM
 - Impacts soil microbial communities

Soil Organic Matter (%)								
County	n	Mean	StDev	Median	Max	Min		
Brown	45.0	8.2	2.7	7.9	15.5	4.3		
Kewaunee	18.0	10.4	5.0	9.4	25.9	4.5		
Outagamie	9.0	9.5	5.9	7.8	20.7	3.5		
Shawano	35.0	5.8	1.9	5.4	10.1	2.6		

Aggregates are created through

• Cementation

- Organic glues
 - Microbial exudates
 - Soil organic matter
- Inorganic glues clays, cations, carbonates

• Compression

- Root growth
- Macrofauna activity
- Freeze/thaw and wet/dry

Diversity of roots and root exudates

• Cover crops

- Fibrous and taproots
- Warm/cool season, grasses, legumes, broadleaves
- Planted early as possible, ideally overwinter
- Interseeding
- Other benefits mulch, pollinators, pest control

• Rotations

- Different plant families, root systems
- Eliminate fallow, if possible

Organic additions

- Composts
- Manures
- Green manures

Measurable SOM increases take time

- Goal???
- 0.1% per year??

Weathering the Storm

Resiliency requires Planning Long-term Investment Management System

Too much rain, too little rain... same concepts apply

We NEED Resiliency

Questions?

JAMIE PATTON

SENIOR OUTREACH SPECIALIST

NUTRIENT AND PEST MANAGEMENT PROGRAM

