Biological De-acidification

WI Fresh Fruit and Vegetable Conference 2020 Nick Smith, UW-Madison Outreach Specialist

April Petite Pearl Field Day

- 2019 WMARS
 - ~35 attendees and ~12 wines (Crimson Pearl)
- Next and final field day:
 - April 6, 2020 Ziegler Winery
- Contact me if you have Petite Pearl wine available for purchase
- Bob Borucki, has some small scale wine items available

De-acidification

- Acid Management Strategies
- Importance of de-acidification, and technical issues
- Types of de-acidification
- Review of chemical de-acidification
- Biological methods of de-acidification
- Multi-method approaches

Acid Reduction – Why Biological Methods?

- Many cool climate grapes exhibit:
 - Low pH
 - Some high pH, particularly in reds
 - High TA
 - High concentrations of malic acid
 - High levels of potassium
- Achieving desired acid balance in wine is complicated
- Every acid management option has some potential challenges and negatives

Acid Reduction

- Two general methods:
 - Chemical de-acidification
 - Carbonates, water, blending
 - Biological de-acidfication
 - Microbes, yeasts

Chemical Methods

- Review:
 - 3 main compounds used
 - Potassium Bicarbonate
 - Calcium Carbonate
 - Double Salts (Acidex)
 - Other options:
 - Amelioration
 - Blending
 - Masking, add more sugar

Chemical Methods

- Potassium Bicarbonate
 - Best for high acid low pH juices/musts
 - Reacts with tartaric acid to form potassium bitartrate
 - Will require cold stabilization
 - Increases malic acid ratio
 - Possible sensory impact
 - Easy to use
 - Limited based on pH and buffering capacity
 - Bench trials with pH measurement
 - 1 4 g/l reduction, depending on initial pH
 - Sensory issues

Chemical Methods

- Calcium Carbonate
 - Reacts with tartaric acid to form calcium tartrate
 - Often used in high pH high acid juice/musts
 - Difficult to stabilize
 - Increases malic acid ratio
 - Possible sensory concerns
 - Easy to use
 - Use pre-fermentation

Chemical Methods

- Double Salts (Acidex)
 - Still available?
 - Incorporates calcium malate tartrate
 - Partial precipitation of calcium tartrate
 - More complicated to use
 - Does it work?

Biological Methods

- Yeast Saccharomyces
- Bacteria MLB
- Yeast Schizosaccharomyces

Biological Methods

Yeasts

- Certain strains capable of partial malic acid consumption
 - 71B, popular for cool climate hybrids
 - 71B has been seen to reduce overall TA by 0.5 to 2 g/L
 - Lalvin C
 - Maurivin B
 - ML01
- What are you using?

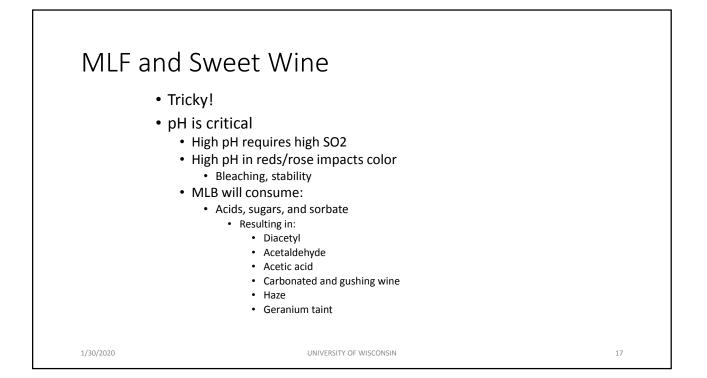
Biological Methods

- Yeast
 - Effectiveness varies
 - Use recommended fermentation temperatures and fermentation conditions
 - Accurate TA measurements

Biological Methods

- Bacteria
 - Using MLB, typically *O. oeni*, to convert malic acid to lactic acid via malolactic fermentation
 - Many different considerations
 - Strain
 - Timing
 - Style
 - Dry vs. sweet
 - MLF impact on wine character

MLF


- Use co-inoculation when minimal sensory impact is desired
 - Diacetyl management
 - Not functional where arresting fermentation is desired
 - Acid reduction takes places following AF
 - Cool temps inhibit MLB
- Analytical capability helpful
 - True of any biological method

Co-inoculation Considerations

- Red and White Wines
 - Must be able to ferment wine to completion
 - Use appropriate yeast/MLB combinations
 - Lower initial sulfur usage
 - Lower pH juice highly recommended

Co-inoculation Considerations

- White wines
 - Lower initial SO2 use, greater potential of browning
 - Best suited for dry wines
 - ML bacteria may need higher fermentation temperatures
 - May be problematic in high malic acid wines (La Crescent)
 - Large pH increase
 - Large production of lactic acid
 - Use Lysozyme on ML incomplete wines
 - Haze formation, La Crescent and Front gris have high levels of heat instability
 - Low pH wines may need a longer time delay before the addition of MLB

				LALLEMA	ND
Table II: Yeast/Bacteria Compatibility					
Compatibility*	MOST COMPATIBLE: 5	4	3	2	LEAST COMPATIBLE
	++	+	+/-	-	-
Yeast Strain	QA23™ ICV D254® 718® AMH™ W15™ VRB®	R2 [™] M2 [™] CY3079 [®] RC212 [®] 43 [®] ICV GRE [™] ICV D47 [™] CEG BC [™] DV10 [™] L 2056 [®] ICV D80 [®] Rhône4600 [®] RHST [®]	EC1118 [™] PdM ICV D21® BDX [™] BRL97 [™] CrossEvolution® BGY [™] CSM [™] RP15 [™] T306® Syrah [™]	RA17® L2226™ BM45™ BM4x4® BA11™	M1™ K1(V1116)™ ICV Opale®

- S. pombe, Pro-Malic
 - Normally considered a spoilage organism
 - Encapsulated in an alginate shell
 - Performs malo-ethanol fermentation
 - Utilizes some sugar
 - Increase in pH
 - Order well in advance of intended use (Scott Labs)

Yeast, Schizosaccharomyces

- Use:
 - Proper inoculation procedure
 - 30C incubation temperature
 - Benefits from some level of circulation
 - Low ethanol tolerance
 - Timing:
 - Promalic then alcoholic fermentation
 - Promalic, CI with alcoholic fermentation
 - Promalic, CI with alcoholic fermentation and MLF

- Use:
 - Timing
 - Pro-malic first
 - Appropriate SO2
 - Regular monitoring and stirring
 - Be wary of oxidation in whites
 - Strict sanitation and observation of indigenous fermentations
 - Remove beads at desired time, then start alcoholic fermentation
 - S. pombe may produce off-flavors

Yeast, Schizosaccharomyces

• Use:

- · Co-inoculation with yeast
 - Add Pro-malic first, then add yeast 1 to 2 days later
 - Alcohol concentration will eventually inactivate ProMalic
 - Important to use yeast that will be compatible with Promalic and vice versa
 - QA23 has worked

Issues:

- Currently available in one quantity, relatively expensive
 - Should be used immediately or soon after opening
- Contributes to alcohol content
 - Large malic acid reductions may cause small alcohol increases
- Ability to measure and monitor TA, malic acid
- Some increase in pH
- Spoilage risk, oxidation

Yeast, Schizosaccharomyces

• Red Wine

- Bead pores can become plugged
 - Re-energize
 - Remove beads and place in warm sugar solution for about an hour each day

• Malate reduction is possible and dramatic

Biological Methods, Considerations

- High malic acid
 - pH increase
 - High lactic acid concentrations
 - Sensory contributions
- Uncertain acid reduction results
- Slower results

Multi-Method Approaches

- Using multiple products and techniques to achieve desired acid concentration and balance
 - Common practices include k-bicarb after fermentation
- One objective is to reduce malic acid concentrations for improved biological deacidification

Multi-Method Approaches

- Malic acid metabolizing yeasts with MLF
 - Co-inoculation of 71B with Beta
- Partial Promalic, alcoholic fermentation, MLF

Questions?

Nicholas Smith NSmith35@wisc.edu